The ANN is capable of learning the relationships between inputs (manipulated and disturbance variables -- MV, DV) and outputs (controlled variable -- CV) of the economic process based on its past history. Once the model of the process is constructed and "trained," it can be continuously updated by minimizing the difference (em) between its output and that of the economy.
CAPITALIST AND socialist societies might distribute the resulting production differently among the population, but the manipulated and disturbance variables in all economic processes are basically the same. The only difference is that in free societies, most of the variables are allowed to float freely (are in automatic), while in totalitarian societies some of the variables are arbitrarily constrained (are in manual).The goals of both economies (the set points in the chart above) are to maintain their LEIs and their GDP (U.S. GDP is about $12 trillion/yr) at some desirable value or to keep raising these targets. LEIs are indicators of the standing of the stock and housing markets, percent unemployment, percent inflation (2-3% in the U.S.), increase in wages (-0.3% drop in 2004 in the U.S.), quality of health, education, social security services, etc. In addition, LEIs also consider the value of the currency and the price to earning ratio (P/E) of securities, which during the last 10 years was 26 in the U.S., the worst since 1927. Some LEIs also include the housing “bubble” (market value of real estate in units of years of rental income), which is 17 today in the U.S.As shown in the chart, the relationship between manipulated variables (such as interest rate, taxation, trade or energy policy) and controlled variables (GDP or LEIs) are functions of the “gains” at the nodes in the “hidden” layer (or layers) of this self-teaching ANN model of the economic process. The ANN controller looks at the difference (ef) between the desired (SP) and actual (CV) values of the GDP (or LEIs) and adjusts the manipulated variable (MV) when an error exists. The ANN controller uses the inverse of the model of the economy to continuously update itself. It does that by comparing its output with that of the actual economy and, if a difference (error em) exists, correcting the model. Naturally, because both the MV and the disturbance variables (DV) influence the real process, they are also inputs to the ANN model.Before one can use an ANN model of a process as a feed forward predictor, it must be trained on past data of process performance. In case of the economy, the model can be trained on the data of the past decades, just as it would be trained on the historical performance data of a distillation column. From the model’s viewpoint it makes little difference if the energy source to a process is the steam supply to a reboiler or the money supply of the economy.In both processes, there is a “gain” relationship between the input and the output, the change in the steam (or money) flow and the resulting increase in production of distillate (or GDP). Naturally, the response to the flow of steam (or money) is not instantaneous, but is determined by the time constants and dead times of the processes. In addition, all measurement signals contain some noise. The filter in the chart serves to remove noise. In case of the process of economy, the filter might serve to remove the effects of the arbitrary acts of fund managers, politics, etc.In the second part of this article, I will describe an ANN model for the economy.
Béla Lipták, PE,
process control consultant, is also editor of the "Instrument Engineers' Handbook" and is seeking new co-authors for the forthcoming new edition of that multi-volume work.