This column is moderated by Béla Lipták, automation and safety consultant and editor of the Instrument and Automation Engineers' Handbook (IAEH). If you have an automation-related question for this column, write to [email protected].
Q1: Dear Béla, I read your article, "Optimization of cooling towers," Nov. 19, '18, and I have a few questions.
First, with reference to Figure 1, the optimum pump speed is determined by a valve position controller (VPC-4), which serves to minimize the pressure drops across all cooling water valves in the plant by opening up all of them until the most open one reaches 90% open.
Is it also feasible to determine optimum pump speed by the differential pressure across the cooling water supply and cooling water return header located near the cooling water pump area? Or perhaps the differential pressure across the cooling water supply and cooling water return header at the furthest point in the process plant?
Seer Ping
[email protected]
A1: Yes, but the tuning constants will change with location. If the safety concerns of the users differ, I usually locate the pressure taps near the most critical user.
Q2: You wrote that, "It's also recommended to use a selective control configuration, which selects the higher of the outputs of TDIC-2 and PDIC-3 to control the pump speed. This serves to prevent the supply pressure to the user valves from dropping too low."
Further, under the subject of "Optimum supply and return water temperatures" you wrote, "The load is detected by PDIC-3, and if its output is higher than that of the range controller (TDIC-2), the range controller is selected to set the pump speed. This makes sure that PDIC-3 will not drive the cooling water pressure to unsafe or undesirably high values because TDIC-2 takes over if the output of PDIC-3 is too high."
Please correct me if I'm wrong, but in comparing the above statements, you recommend using the higher of the outputs of TDIC-2 (i.e. range controller) and PDIC-3 (i.e. load controller) to control the pump speed. You also state that if the load controller output is higher than the range controller, the range controller should be used to set the pump speed. This second statement seems to contradict the first, as it implies the lower output should be selected to control the pump speed.
May I seek your advice about which control strategy should be implemented?
A2: An excellent question, it illustrates the first commandment of process control engineering, which is: In order to optimize a process, you must first fully understand it!
So, let's look at this process (Figure 1), showing the minimum cost optimization of a cooling tower-based plant cooling system. As shown in the upper right corner of the figure, the total cost of operation is the sum of the cost of operating the fan in the cooling tower (M1) and the cost of operating the pump (M2). By plotting the costs of pump and fan operation (based on actual measurements) as a function of approach (the difference between the cooling tower supply temperature and the wet bulb temperature of the air), we obtain a cost curve that has a minimum point (SP1). If we always operate the cooling system at an approach of SP1, it will run at minimum cost.