This configuration is simple and low-maintenance because the control valve is on the water side. The cooling water velocity should exceed 4.5 ft per sec (1.35 m/s), keeping the condenser residence time under 45 sec and allowing the use of a narrow proportional pressure controller. At higher residence times, the controller will require a wider throttling range and the addition of an integral mode, which will no longer be satisfactory for precision distillation applications, because the dead time will vary with load. Therefore, one should not use this control system when the process time lag is large.
If one would like to have a more responsive control system, the control valve can be moved into the condensate line. In such a configuration, when the column pressure is dropping, the PRC reduces the opening of this valve, which causes the condensate level to build up, reducing the tube surface exposed to the condensing vapors due to the flooding of the heat transfer tubes. This reduces the rate of condensation and increases the column pressure. If it is expected that over time the inerts will accumulate and blanket the condenser, a vent valve should be added to the condenser.
Distillate with Inerts
When the amount of inerts is variable (Figure 2), the purge stream is throttled by VPCV-2. As the inerts build, the pressure controller will first open up the control valve (PCV-1), which uncovers more tubes in the condenser and increases the rate of condensation. When PCV-1 is nearly fully open (say 95%), the valve position controller (VPC-2) starts to remove the inerts by opening control valve (VPCV-2).