Industry practice and experience also recommend the update rate should be four to 10 times faster than the time constant of the process for regulatory closed-loop control, so though it’s at the low end, the 4 sec. update rate would also work in this example.
Another, non-process-related consideration in addition to battery life is the impact traffic may have on the network itself, and in particular, the access point or gateway. One WSN manufacturer recommends keeping update rates no faster than 4 sec. since doing so can impact the total number of wireless devices that can be put on a gateway. Therefore, the 4 sec. update rate for this example works well by meeting all three minimum criteria.
Temperature is one example of a slow process. Level measurement, especially in large tanks, is another. These sorts of measurements are well suited to wireless sensing because they can operate with slower update rates, and when you consider that large tanks and tank farms are widely distributed, not having to install cable infrastructure makes a lot of sense.
With today’s computing power, the smart people working in our industry have developed a number of fancy tricks to compensate for the effects of delayed measurements, such as custom P&ID algorithms for wireless networks that consider lag, other control algorithms (such as Smith Predictors, developed in 1957), or other math. (Some would say mask rather than compensate, especially if they are used improperly by a person not understanding and applying first principles correctly.)
Despite all the advances we have made and continue to make with our control systems, it is always good to remember why we are implementing the application, as well as the underlying associated engineering principles, and basic laws of physics and chemistry that need to be followed.
Not everyone makes a good controls engineer, technician or practitioner, however, if you remember the basic laws of physics and chemistry, the chances of succeeding going up significantly.
About the author: Ian Verhappen