By Béla Lipták, columnist
One of the challenges of the new century for the U.S. is to find alternative energy sources. At present, our military spends approximately $1 trillion a year on defense—and part of what we are defending is our oil supply. Furthermore, what we spend on the military does not provide a permanent solution.
That sum would be better spent on starting the conversion to the solar-hydrogen economy.
I just completed a book on this subject, Post-Oil Energy Technology: After the Age of Fossil Fuels, which will be published in August. It emphasizes process control’s critical role in the coming transition to this solar-based, clean, free and inexhaustible energy supply. The book contains the details of a fully automated and optimized demonstration power plant. To my knowledge, it’s the first one in the world.
I hope that this plant will soon be built, and we will obtain hard, factual data to prove that, besides eliminating nuclear proliferation and climate change, this renewable energy technology is also cost-effective (Click here to see Wholesale Electricity Costs table).
Once we have this data, the debate on economic feasibility will be over. At that point, I hope we’ll stop using our atmosphere as a garbage dump, and start converting from our present, exhaustible and dangerous fossil-nuclear economy. This transition will trigger an economic boom unseen since the Marshall Plan.
The total global electricity demand can be met by the solar energy that can be collected from an area less than 1% of the Sahara. Naturally, solar farms don’t need to be in the Sahara. They can be in the arid southwestern U.S.
A 1,000 MW plant requires about 6 sq. mi. The total electricity demand of the International Space Station is met by a one-acre collector, which receives 1.37 kW/m2 insolation, while peak insolation on a March day in Draggett, Calif., is 1.0 kW/m2.
The Role of Process Control
Now, we turn to the process control aspects of my proposed solar-hydrogen demonstration plant. I should start by noting that concentrating thermal solar plants exist already (Click here to see Solar Hydrogen Demostration image), but they have not solved the storage problem. They just provide fossil backup.
What is original in my design is that dual non-fossil backup (hot oil and hydrogen) is provided, and the intermittent solar energy is supplemented with continuously available geothermal energy. Basically, the solar-hydrogen economy works by using solar energy as its fuel and generating distilled water as its emission.